Nilai lim_(x→2)⁡ ((x^2-5x-6) sin⁡ 2(x-2))/((x^2-x-2))=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to 2} \frac{(x^2-5x-6) \sin 2(x-2)}{(x^2-x-2)} = \cdots \)

  1. -8
  2. -5
  3. -2
  4. 3/4
  5. 5

(UM STIS 2017)

Pembahasan:

\begin{aligned} \lim_{x \to 2} \frac{(x^2-5x-6) \sin 2(x-2)}{(x^2-x-2)} &= \lim_{x \to 2} \frac{(x+1)(x-6) \sin 2(x-2)}{(x+1)(x-2)} \\[8pt] &= \lim_{x \to 2} \frac{(x-6) \sin 2(x-2)}{(x-2)} \\[8pt] &= \lim_{x \to 2} (x-6) \cdot \lim_{x \to 2} \frac{\sin 2(x-2)}{(x-2)} \\[8pt] &= (2-6) \cdot 2 = -8 \end{aligned}

Jawaban A.